
Beschreibung / Description DSP4TR

DMX512 special 4x 16A Relay & SSR switchpack for reduction of momentary inrush currents

&

4 (32) channel sequencer 0.1-99s

Made in Germany

DSP4TR

1.	FUNKTIONSBESCHREIBUNG		
2.	BETRIE	BSARTEN	4
2.1	DMX	K512	4
	2.1.1		
	2.1.2	-	
	2.1.3	Letzten Rahmen Halten	5
	2.1.4	Leitungsabschluss	5
2.2	Sequenzer		5
	2.2.1	Verzögerungszeit	6
	2.2.2	Kaskadierung	6
2.3	Test	betrieb	8
3.	ANZEIG	EN	8
4.	ANSCH	LUSSBEISPIEL	9
5.	TECHNISCHE DATEN / STECKERBELEGUNG		
ENGL	ISH MAN	UAL - TABLE OF CONTENTS	11

1. Funktionsbeschreibung

Das DSP4TR ist ein DMX5212 gesteuertes Schaltmodul mit 4 Leistungsschaltern für Netzspannung bis 250V~ und 16A Nennstrom zum Schalten von Einschaltströmen mit hohen Augenblickswerten, wie sie bei vielen Schaltnetzteilen u.a. bei LED-Stromversorgungen¹ auftreten können.

Die Leistungsangabe eines Schaltnetzteils sagt noch nichts über dessen Einschaltstrom aus. Selbst mehrere Schaltnetzteile die zusammen z.B. nicht mehr als 800W liefern, können nicht garantiert gleichzeitig an einem 16A Sicherungsautomaten eingeschaltet werden.

Das DSP4TR ist durch präzise Kombination von elektronischem und mechanischem Relais, in der Lage eine angeschlossene komplexe Last im Nulldurchgang der Netzspannung einzuschalten, dadurch den Spitzeneinschaltstrom deutlich zu reduzieren¹ und anschließend große Leistungen ohne überdurchschnittliche Erwärmung des DSP4TR zu führen.

Aktuell konnte durch konsequenten Einsatz modernster Schaltungstechnik, der Leckstrom der Halbleiterschalter soweit gesenkt werden, dass es nicht mehr zu gelegentlichen, kurzen Einschaltvorgängen bei Schaltnetzteilen kommt.

Eine weitere Besonderheit ist der Sequenzer, der die 4 Kanäle des DSP4TR der Reihe nach, mit einstellbarer Verzögerung, mit jedem Einschalten des DSP4TR aktiviert

¹

Beispiel: MEAN WELL -HLP60H-36
Kaltstart bei 230V → 55A (t_{Breite} 265µs gemessen bei 50% I_{spitze})
Mit DSP4TR → 5A (t_{Breite} 4ms)

Hinweis:

In jedem Fall wird die Schaltreihenfolge (SSR/Relais) und die Einschaltverzögerung von einem Kanal zum nächsten beibehalten. Das gleichzeitige Einschalten von 2 oder mehr Kanälen ist nicht möglich. Auch bei wiederkehrender Spannungsversorgung und manuell eingeschalteter Kanäle wird ein Mindesteinschaltverzug von ca. 40ms zum nächsten Kanal eingehalten.

2. Betriebsarten

Die Auswahl der zur Verfügung stehenden Betriebsarten und Eigenschaften erfolgt an den drei Drehkodierschaltern und dem DIP-Schalter S4.

Besondere Beachtung gilt dem DIP-Schalter S4.8, der durch EIN-& Ausschalten einen Reset des Schaltpacks auslöst.

Diese Möglichkeit einen Reset auszulösen kann hilfreich sein (z.B. den Sequenzer neu starten) wenn man die Stromversorgung des DSP4TR nicht einfach unterbrechen kann.

2.1 DMX512

Startadresse: 001 – 512 (000 = Mute) Manuelles Einschalten: DIP-Schalter S4.1 bis S4.4

Letzten Rahmen halten: DIP-Schalter S4.5 Schaltschwelle: DIP-Schalter S4.6

Der DMX512 Betrieb erfolgt im Adressbereich von 001 bis 512. Die Startadresse wird an den drei Drehkodierschaltern (100er-10er-1er) dezimal eingestellt. Ab der eingestellten Adresse beginnt der erste Schaltkanal K1 des DSP4TR, gefolgt von K2, K3 und K4.

2.1.1 Schalthysterese

Die Kanäle sind mit einer Einschalthysterese versehen, zwei Schaltschwellen stehen zur Wahl.

DIP-Schalter S4.6 AUS:

Einschalten > 158 digit (60%), Aus < 104 digit (40%)

DIP-Schalter S4.6 Ein:

Einschalten > 6 digit (3%), Aus < 4 digit (2%)

2.1.2 Manuelle Bedienung

Eine manuelle Bedienung der 4 Kanäle erfolgt über die DIP-Schalter S4.1 bis S4.4. Mit dem entsprechenden Schalter kann ein Kanal unabhängig vom DMX512 Stellwert auf Dauer Eingeschaltet werden.

2.1.3 Letzten Rahmen Halten

Das DSP4TR speichert kontinuierlich den letzten gültigen Rahmen einer DMX512 Übertragung und hält die Schaltzustände bei einem Ausfall oder einer Störung der Schnittstelle.

Bei Bedarf kann die Funktion deaktiviert werden, so dass im Fehlerfall alle Kanäle ausgeschaltet werden. DIP-Schalter S4.5 auf EIN.

2.1.4 Leitungsabschluss

Eine DMX512 Datenleitung muss am Ende mit einem 120 Ω 1W Widerstand "abgeschlossen" werden, d.h. der Widerstand wird zwischen -Data und +Data angeschlossen.

2.2 Sequenzer

Startadresse: 801 – 899

Geräteverzögerung DIP-Schalter S4.1 bis S4.3

Multiplikator Verzögerung: DIP-Schalter S4.4

Die Betriebsart Sequenzer und die Relaisverzögerung wird an den Drehkodierschaltern mit den Adressen 801 bis 899 eingestellt. Der Sequenzer startet dann automatisch sobald der DSP4TR mit Strom versorgt oder im DMX-Betrieb die Adresse 8xx eingestellt wird. Die Sequenz beginnt mit Kanal1 und dann mit der eingestellten Verzögerung, die Kanäle 2, 3 und 4. Alle Kanäle bleiben danach eingeschaltet bis ein Reset durch Aus-& Einschalten der Stromversorgung oder DIP-Schalter S4.8 ausgelöst wird.

Bei Kaskadierung von mehreren DSP4TR muss an jedem Gerät über die DIP-Schalter S4.1 bis S4.3 noch die passende Geräteverzögerung eingestellt werden. Wichtig: in der DMX-Betriebsart haben diese Schalter eine andere Bedeutung siehe 2.1.2.

Ist die Betriebsart "Sequenzer (8xx)" einmal eingestellt, kann diese nur mit einem Gerätereset am DIP-Schalter S4.8 oder Netzspannung Aus/Ein verlassen werden (zuvor muss aber die Adresse wieder auf 000-512 eingestellt worden sein.

2.2.1 Verzögerungszeit

Die beiden letzten Ziffern (Drehkodierschalter S2 & S3) legen die Verzögerungszeit fest, mit der die Kanäle nacheinander eingeschaltet werden. Abhängig vom DIP-Schalter S4.4 liegt die an den Drehkodierschaltern eingestellte Verzögerung zwischen 0,1s und 9,9 Sekunden (S4.4 → Aus x 100ms) oder zwischen 1s und 99s (S4.4 → Ein x 1s). Die Verzögerung kann jederzeit verändert werden.

2.2.2 Kaskadierung

Für eine Erweiterung des Sequenzers auf 8 oder mehr Kanäle kann jedem weiteren DSP4TR eine Geräteverzögerung zugewiesen werden. Damit ist gewährleistet, dass alle Kanäle mit der Selben Verzögerung starten.

Es können maximal acht DSP4TR zu einem Sequenzer kombiniert werden (32 Kanäle), immer vorausgesetzt, es werden alle DSP4TR über ihre Stromversorgung gleichzeitig eingeschaltet.

```
DIP S4: 0-0-0
                 = 1. DSP4TR. Kanal 1 bis 4
                 = 2. DSP4TR, Kanal 5 bis 8
         1-0-0
         0-1-0
                 = 3. DSP4TR, Kanal 9 bis 12
         1-1-0
                 = 4. DSP4TR. Kanal 13 bis 16
                 = 5. DSP4TR. Kanal 17 bis 20
         0-0-1
                 = 6. DSP4TR. Kanal 21 bis 24
         1-0-1
                 = 7. DSP4TR, Kanal 25 bis 28
        0-1-1
         1-1-1
                 = 8. DSP4TR. Kanal 29 bis 32
```

Beispiel: Sequenzer mit 12 Kanälen & 1s Schaltverzögerung Dazu werden drei DSP4TR benötigt.

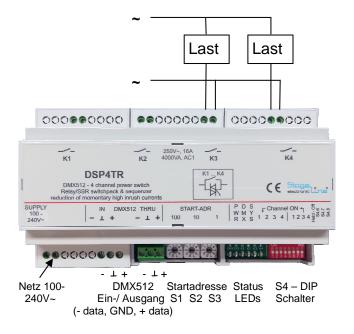
- a) DIP-Schalter S4.8 bei allen auf EIN(ON)
 Sofern die Betriebsart noch nicht ausgewählt wurde
- b) Adresse 801 am Drehkodierschalter einstellen
- c) DIP-Schalter S4.4 auf EIN → 01 x 1s
- d) DIP-Schalter S4.1 S4.3 → 000 am 1. DSP4TR
- e) DIP-Schalter S4.1 S4.3 → 100 am 2. DSP4TR
- f) DIP-Schalter S4.1 S4.3 → 010 am 3. DSP4TR
 g) DIP-Schalter S4.8 bei allen auf AUS(OFF), nur wenn a)

Mit dem Ausschalten des DIP-Schalters S4.8 startet der Sequenzer des betreffenden DSP4TR das erste mal und lässt sich so überprüfen, die anderen DSP4TR verhalten sich entsprechend. War der Sequenzer bereits aktiv wird die neue Verzögerung erst nach dem Aus- & Wiedereinschalten des DSP4TR wirksam.

D.h. erst wenn alle drei DSP4TR über ihre Stromversorgung aus und gemeinsam wieder eingeschaltet werden ergibt sich der vollständige Sequenzablauf von Kanal 1 bis 12 in 11 Sekunden (der 1. Kanal wird ohne die Verzögerung gestartet).

2.3 Testbetrieb

Startadresse 001 – 512 Manuelles Einschalten: D


DIP-Schalter S4.1 bis S4.4

Eine spezielle Testbetriebsart ist nicht vorgesehen, da es mit den DIP-Schaltern S4.1 bis S4.4 in der DMX512 Betriebsart jederzeit möglich ist die Kanäle einzeln zu aktivieren.

3. Anzeigen

PWR -	LED(rot)	leuchtet	= Netzspannung liegt an
DMX -	LED (grün)	leuchtet	= gültiges DMX512 Signal
		blinkt	= kein oder fehlerhaftes DMX
SYS -	LED (gelb)	leuchtet	= System arbeitet
		blinkt	= Stand-By, DIP S4.8 ist Ein
K1-	LED (gelb)	leuchtet	= Kanal 1 ist eingeschaltet
K2-	LED (gelb)	leuchtet	= Kanal 2 ist eingeschaltet
K3-	LED (gelb)	leuchtet	= Kanal 3 ist eingeschaltet
K4-	LED (gelb)	leuchtet	= Kanal 4 ist eingeschaltet

4. Anschlussbeispiel

5. Technische Daten / Steckerbelegung

Stromversorgung: 100-240V +/- 15% (85-265V ~),

47-440Hz, ca. 4,5W Stromsparmodus

DMX512-1990, vollständig isoliert Schnittstelle: 250V~, 16A Nenn-, 70A Einschaltstrom Netzschalter:

Leckstrom: <10µA / Kanal

Schalthysterese 1: Ein/Aus 153 / 101 Digits

Schalthysterese 2: Ein/Aus > 6 / < 4 Digits Maße: 160 x 90 x 58 mm (L x B x H)

Gewicht: 420g

DMX512-A Steckverbinder Belegung nach ESTA E1.11 – 2004

Funktion	XLR 5	pol	XLR3pol	RJ45 / Farbe
Data 1+	3	3	1	ws/ or
Data 1-	2	2	2	or
Signal-Masse 1	1	1	7	ws/ br
Data 2+	5*	-	3	ws/ gn
Data 2-	4*	-	6	gn
Signal-Masse 2	-*	-	8	br
nicht verwendet			4	bl
nicht verwendet			5	ws/ bl
Schirm	**	**		

Vor dem Öffnen des Gerätes den Netzstecker ziehen!!

nur optional bei DMX512-A vorgesehen

ist bei DMX512 Kabeln als Signal-Masse an Pin 1 zu verwenden

English manual - Table of contents

1. FU	NCTIONA	AL DESCRIPTION	12
2.	MODES	3	13
2.1	DMX	X512	13
	2.1.1	Switching threshold	13
	2.1.2	Manual overwrite	14
	2.1.3	Hold last DMX512 frame	14
	2.1.4	Termination	14
2.2	Seq	uencer	14
	2.2.1	Delay time	14
	2.2.2	Sequencer extension	15
2.3	channel test - only DMX operating mode		16
3.	LED STATUS DISPLAY		16
4.	APPLIC	17	
5.	TECHNICAL DATA1		

1. Functional description

The special of the DMX512 controlled 4 channel switchpack DSP4TR is to switch and control LED supplies and other electronic ballasts with high momentary inrush currents².

The problem to be solved is the summary of high inrush currents of several ballasts which should work at one AC Line.

The DSP4TR is able to do that by switching at zero cross state and using a precision timing between electronic and mechanical relays. Because of this feature of the four potential free switches the DSP4TR is able to switch on more ballasts than normally at a 16A circuit breaker possible.

In case of more than one switch becomes 100% at same time there is a fix delay of approx. 40ms between all channels, so that they never can get to on state at the same time.

A further special is the sequencer mode. In this case the DSP4TR switches all four channels automatically on with an adjustable delay time. This is an independent mode which starts with "power on" of the DSP4TR.

With this version and using latest electronic parts the leakage current of the SSRs could be reduced as low that there will be no more short start procedure of switching power supplies anymore.

with DSP4TR → 5A (t_{width} 4ms)

,

Example: MEAN WELL - HLP60H-36 cold start at 230V → 55A (t_{width} 265µs measured @ 50% I_{peak})

Note:

Under all circumstances the DSP4TR follows an internal sequence switching on semiconductor and mechanical relays for inrush current reduction. Further on it is impossible that more than one channel switches on at the same time.

2. Modes

All Modes and behaviours are selected via the three rotary code switches and the DIP-switch S4.

Special attention should be given to DIP-switch 4.8, this switch triggers a system reset of the DSP4TR.

This can be helpful in some cases, e.g. a restart of the sequencer without switching off the power supply.

2.1 DMX512

Start address: 001 - 512 (000 = Mute) Manual switching on: DIP-switch S4.1 to S4.4

Hold last DMX frame: DIP-switch S4.5 Switching threshold: DIP-switch S4.6

In DMX512 operating mode the start address is set at the three rotary codes switches S1 to S3. The first channel starts with set address, followed by channel 2, 3 and 4.

2.1.1 Switching threshold

All channels using different values for ON or OFF state. Two thresholds are available.

DIP-switch S4.6 OFF:

ON State > 158 digits (60%), OFF State < 104 digits (40%)

DIP-switch S4.6 ON:

ON State > 6 digits (3%), OFF State < 4 digits (2%)

2.1.2 Manual overwrite

To switch a channel ON by hand, independent by DMX512 control, use DIP-switches S4.1 to S4.4.

The LEDs K1 to K4 shows a switched on channel.

2.1.3 Hold last DMX512 frame

The latest valid DMX512 frame (all transmitted channels) is stored continuously. In case of a lost DMX512 signal or faulty frames the last values are held until the transmission continued.

This behavior could be disabled by setting DIP-switch S4.5 ON. Now all channels will be switched OFF in case of an DMX error.

2.1.4 Termination

At the end of a DMX512 line it is recommended to connect a 120 Ω 1W resistor between data- and data+, here at the second terminal block between the green and red clamps.

2.2 Sequencer

Start address: 801 – 899

Device delay DIP-switch S4.1 to S4.3

Multiplier delay: DIP-switch S4.4

The sequencer starts automatically by switching on the power supply. Beginning with channel 1 and followed by the channel 2, 3 and 4 with the selected delay time.

For bigger sequencers the DSP4TR can be extended to up to 8 devices (32 channels). See 2.2.2.

The sequencer operating mode and the delay (801 - 899) is set by the rotary code switches S1 to S3. To change operating modes use DIP-switch S4.8, as described in chapter 2.0.

2.2.1 Delay time

The last two numbers of the address (801), choose the delay time the channels should wait before switching on. The range is from 1

to 99 dependent from the DIP-switch S4.4. This switch selects the multiplier for the delay time with 100 ms or 1s. So the whole span for the delay time is from 0.1 up to 99 seconds in two ranges.

From 0.1 to 9.9 seconds (S4.4 \rightarrow OFF x 100 ms) and from 1 to 99 seconds (S4.4 \rightarrow ON x 1s).

2.2.2 Sequencer extension

For bigger sequencers the DSP4TR can be extended to up to 8 devices (32 channels). Therefore it is necessary to set a device delay, so that each device begins with its first channel at the right time. (DIP-switch S4.1 to S4.3).

Always assuming that all DSP4TRs are switched on simultaneously via their power supply.

These switches are coded in binary counting from the left to the right and give the DSP4TR its start number.

```
= 1. DSP4TR, channel 1 to 4
Setting: 0-0-0
                   = 2. device, channel 5 to 8
         1-0-0
         0 - 1 - 0
                   = 3, device, channel 9 to 12
         1-1-0
                   = 4, device, channel 13 to 16
         0 - 0 - 2
                   = 5. device, channel 17 to 20
         1-0-2
                   = 6, device, channel 21 to 24
         0-1-2
                   = 7. device, channel 25 to 28
         1-1-1
                   = 8. device, channel 29 to 32
```

Example: Sequencer with 12 channels & 1s delay time This needs three pieces of DSP4TR.

- a) DIP-switch S4.8 set to ON at all devices
 Only necessary if the sequencer operating mode has
 been activated yet.
- b) Set 801 to the rotary code switches
- c) DIP-switch S4.4 to ON position (→ 01 x 1 second)
- d) DIP-switch S4.1 S4.3 → 000 at the first DSP4TR
- e) DIP-switch S4.1 S4.3 → 100 at the second DSP4TR
- f) DIP-switch S4.1 S4.3 → 010 at the third DSP4TR

g) DIP-switch S4.8 to OFF position at all devices, only if a)

With switching off the DIP-switch S4.8 the DSP4TR leaves it reset mode and starts the sequencer operating mode. Now you can see if your settings are correct.

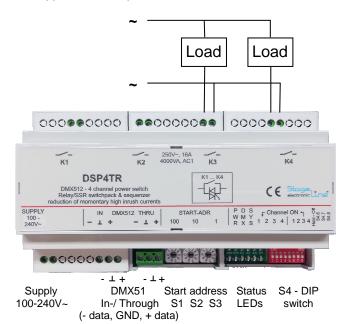
Note!

The whole sequencer with all devices and delays will start first when all DSP4TRs will be switched on simultaneously via their power supply. Channel 1 of device 1 starts at once, then all the other channels with 1 second delay.

(All channels are on after 11 seconds in this example)

2.3 channel test - only DMX operating mode

Start address: 001 – 512


Manual on: DIP-switch S4.1 to S4.4

There is no special operating mode for channel test, the DIPswitches S4.1 to S4.4 sets the channels 1 to 4 in ON state independent from the DMX data.

3. LED status display

PWR -	LED(red)	lit	= supply voltage is on
DMX -	LED (green)	lit	= valid DMX512 signal
		blink	= no or faulty DMX signal
SYS -	LED (yellow)	lit	= system is running
		blink	= Stand-By, DIP S4.8 is ON
K1-	LED (yellow)	lit	= channel 1 is ON
K2-	LED (yellow)	lit	= channel 2 is ON
K3-	LED (yellow)	lit	= channel 3 is ON
K4-	LED (yellow)	lit	= channel 4 is ON

4. Application example

17

5. Technical data

Supply: 100-240V +/- 15% (85-265V ~),

47-440Hz, approx. 4,5W power save mode

Interface: DMX512-1990, fully isolated

AC switches: 250V~, 16A continuously / 70A inrush

Leakage current: $< 10\mu A$ / channel (Off state) Switching threshold 1: On/Off 153 / 101 digits Switching threshold 2: On/Off > 6 /< 4 digits

Dimensions: 160 x 90 x 58 mm (L x W x H)

Weight: 420g

Plug connector assignment - As indicated in DMX512A and ESTA E1.11, the following pinning have come to the application.

Function	XLR 5	pol	XLR3pol	RJ45/color
Data 1+	3	3	1	wh/og
Data 1-	2	2	2	og
Signal ground 1	1	1	7	wh/ bn
Data 2+	5*	-	3	wh/ gn
Data 2-	4*	-	6	gn
Signal ground 2	-*	-	8	bn
not used			4	bu
not used			5	wh/bu
shield	**	**		

provided only at DMX512 A

Disconnect Mains before opening cover!!

^{**} has to be used as signal ground of pin 1 at DMX512 cables.

this side is empty